Abstract

The inhibition of ErbB2 by the use of human antibodies can be a valuable strategy for the treatment of breast and gastric cancer. Trastuzumab, a humanized anti-ErbB2 antibody in clinical use, is effective but can engender resistance as well as cardiotoxicity. ImmunoRNases, made up of a human anti-ErbB2 scFv and human pancreatic ribonucleases (HP-RNases), have been engineered to overcome the limits of other immunotoxins, such as immunogenicity and nonspecific toxicity. Here, we report that a novel anti-ErbB2 immunoRNase, called Erb-HPDDADD-RNase, obtained by fusing Erbicin, a human ErbB2-directed scFv, with an HP-RNase variant that resists the cytosolic inhibitor protein, binds with high affinity to a panel of ErbB2-positive gastric tumor cells and inhibits their growth more than does the parental immunoRNase, which is not resistant to the inhibitor. Moreover, Erb-HP-DDADD-RNase is endowed with antiproliferative activity for trastuzumab-resistant cancer cells both in vitro and in vivo that is more potent than that of the parental immunoRNase. Importantly, Erb-HP-DDADD-RNase does not show cardiotoxic effects in vitro on human cardiomyocytes and does not impair cardiac function in a mouse model. Thus, Erb-HP-DDADD-RNase could fulfil the therapeutic need of cancer patients ineligible for trastuzumab treatment due to primary or acquired trastuzumab resistance or to cardiac dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.