Abstract

It is known that in supernova explosions, there might be a reverse shock wave in addition to the forward shock wave during the explosion phase, when the mass of supernova is in a certain range. In this paper, we propose to add the reverse shock wave to the previous supernova model, in which only the forward shock wave was included, and thus obtain a new model. By analyzing the resonance condition as well as the density jump in the new model and using the Landau-Zener method, an expression for the crossing probability in high density matter (PH) is given. We proceed to study how PH varies with time and with neutrino energy when both the reverse shock wave and the forward shock wave are considered. From comparison with the previous results, where only the effects of the forward shock wave were considered, it is clear that the reverse shock wave brings significant changes to PH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call