Abstract

The increasing use of auctions as a selling mechanism has led to a growing interest in the subject. Thus both auction theory and experimental examinations of these theories are being developed. A recent method used for carrying out examinations on auctions has been the design of computational simulations. The aim of this article is to develop a genetic algorithm to find automatically a bidder optimal strategy while the other players are always bidding sincerely. To this end a specific dynamic multiunit auction has been selected: the Ausubel auction, with private values, dropout information, and with several rationing rules implemented. The method provides the bidding strategy (defined as the action to be taken under different auction conditions) that maximizes the bidder's payoff. The algorithm is tested under several experimental environments that differ in the elasticity of their demand curves, number of bidders and quantity of lots auctioned. The results suggest that the approach leads to strategies that outperform sincere bidding when rationing is needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call