Abstract

Grover's algorithm provides a quadratic speed-up over classical algorithms for unstructured database or library searches. This paper examines the robustness of Grover's search algorithm to a random phase error in the oracle and analyzes the complexity of the search process as a function of the scaling of the oracle error with database or library size. Both the discrete- and continuous-time implementations of the search algorithm are investigated. It is shown that unless the oracle phase error scales as O(N^(-1/4)), neither the discrete- nor the continuous-time implementation of Grover's algorithm is scalably robust to this error in the absence of error correction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.