Abstract

In order to study the mechanisms influencing bile acid pool size and cholesterol saturation index of fasting gall bladder bile, eight obese volunteers were placed on a low calorie diet for six weeks, and given intramuscular injections of a pharmacological dose of cholecystokinin octapeptide (CCK-OP, 5 micrograms) at mealtimes for half that period (alternating order). During CCK-OP administration, postprandial emptying of the gall bladder (mean +/- SEM) increased from 58 +/- 11% to 82 +/- 5% (p less than 0.005), and small intestinal transit time decreased from 205 +/- 27 to 178 +/- 26 minutes (NS). Bile acid pool size decreased from 4.6 +/- 0.3 to 3.1 +/- 0.3 mmol (p less than 0.001), while fractional turnover rate for chenodeoxycholic acid increased from 0.23 +/- 0.02 to 0.36 +/- 0.03 per day (p less than 0.005), suggesting an increase in recycling frequency of the pool. Synthesis rate was unchanged (0.43 +/- 0.08 vs 0.44 +/- 0.07 mmol/day), suggesting a new steady state. The cholesterol saturation index of fasting gall bladder bile increased in all subjects from 1.3 +/- 0.1 to 1.6 +/- 0.1 (p less than 0.005). Fasting gall bladder volume was reduced from 29 +/- 4 to 20 +/- 7 ml (p less than 0.01). Fractional turnover rate on the two regimens correlated with gall bladder emptying (n = 16, r = 0.61, p less than 0.01), but not with small intestinal transit time (r = 0.07, NS). Bile acid pool size correlated with fractional turnover rate (r = -0.73, p less than 0.005) and with cholesterol saturation index (r = -0.56, p less than 0.025). These findings suggest that CCK influences bile acid kinetics and cholesterol saturation index of fasting gall bladder in man; and that these effects of CCK are mainly mediated via alterations in gall bladder emptying rather than through alterations in small intestinal transit rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.