Abstract

In this study, a three-dimensional finite-element model of the passive human cochlea was created. Dynamic behavior of the basilar membrane caused by the vibration of the stapes footplate was analyzed considering a fluid–structure interaction with the cochlear fluid. Next, the effects of a perilymphatic fistula (PLF) on the vibration of the cochlea were examined by making a small hole on the wall of the cochlea model. Even if a PLF existed in the scala vestibuli, a traveling wave was generated on the basilar membrane. When a PLF existed at the basal end of the cochlea, the shape of the traveling wave envelope showed no remarkable change, but the maximum amplitude became smaller at the entire frequency range from 0.5 to 5kHz and decreased with decreasing frequency. In contrast, when a PLF existed at the second turn of the cochlea, the traveling wave envelope showed a notch at the position of the PLF and the maximum amplitude also became smaller. This model assists in elucidating the mechanisms of hearing loss due to a PLF from the view of dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.