Abstract

Prostate cancer is the most frequently diagnosed cancer and is one of the leading causes of male cancer death in the world. Recently, in the course of our screening for a novel anticancer compound, we synthesized carbocyclic analogs of pyrrolo[2,3-d]pyrimidine nucleoside; compounds 5, and 6. In the current study, we report the effects of compound 5 on pleiotropic induction of cell death via up-regulation of AR-associated p21(Cip1) protein in prostate cancer cells with different androgen responsiveness, such as LNCaP (androgen-dependent and -sensitive), LNCaP(C4-2) (androgen-independent and -sensitive; androgen-refractory), and DU145 (androgen-independent and -insensitive) cells. The treatment of LNCaP cells with 6 μM compound 5 for 24 h stimulated the androgen receptor (AR) activity and dramatically up-regulated transcription (56-fold) of p21(Cip1), which, in turn, induces typical apoptosis in the cells. However, induction of apoptosis through up-regulation (23-fold) of AR-associated p21(Cip1) achieved in LNCaP(C4-2) cells was possible by intensive cell treatment with compound 5 (9 μM, 48 h), because the cells are less sensitive and independent to androgen than LNCaP cells. Furthermore, 6 μM compound 5-treated DU145 cells, which exhibit extremely low AR activation due to no androgen responsiveness and dependency, showed neither up-regulation of p21(Cip1) nor apoptotic induction. Instead, a different type of cell death, autophagy-like death through the LC3B-associated autophagosome formation, was obviously induced in DU145 cells. Taken together, our results suggest that pleiotropic induction of prostate cancer cell death by compound 5 is determined by how efficiently and how abundantly androgen-dependent activation of the AR occurs, whereas compound 6 shows no induction of apoptosis in LNCaP cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call