Abstract

The increased rate of antibiotic resistance strongly limits the resolution of Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Therefore, new strategies to control bacterial infections are urgently needed. Bacillus subtilis (B. subtilis) and its metabolites are desirable antibacterial agents. Here, we aimed to evaluate the antibacterial activity of the novel B. subtilis strain GXYX (No: PRJNA940956) crude lipopeptide against S. Typhimurium. In vitro, GXYX crude lipopeptides affected S. Typhimurium biofilm formation and swimming and attenuated the adhesion and invasion abilities of S. Typhimurium toward BHK-21 cells; in addition, it inhibited the mRNA expression of the filA, filC, csgA, and csgB genes, which are related to the adhesion and invasion ability of S. Typhimurium. In vivo, pretreatment with GXYX crude lipopeptide via intragastric administration improved the survival rate by 30%, which was related to reductions in organ bacterial loads and clinical signs in mice. Intragastric administration of GXYX crude lipopeptide significantly downregulated the mRNA levels of TNF-α, IL-1β, IL-12 and IL-6 in response to S. Typhimurium-induced inflammation compared with intraperitoneal injection. Moreover, it significantly improved the intestinal barrier-related gene (ZO-1, claudin-1, occludin-1) mRNA levels in intestinal tissue damaged by S. Typhimurium infection. In conclusion, GXYX crude lipopeptides were effective at reducing S. Typhimurium colonization, laying a foundation for the further development of novel antibacterial agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call