Abstract

Evidence is presented which suggests that the NAD(P)H-cytochrome c reductase component of nitrate reductase is the main site of action of the inactivating enzyme. When tested on the nitrate reductase (NADH) from the maize root and scutella, the NADH-cytochrome c reductase was inactivated at a greater rate than was the FADH 2-nitrate reductase component. With the Neurospora nitrate reductase (NADPH) only the NADPH-cytochrome c reductase was inactivated. p-Chloromercuribenzoate at 50 μM, which gave almost complete inhibition of the NADH-cytochrome c reductase fraction of the maize nitrate reductase, had no marked effect on the action of the inactivating enzyme. A reversible inactivation of the maize nitrate reductase has been shown to occur during incubation with NAD(P)H. In contrast to the action of the inactivating enzyme, it is the FADH 2-nitrate reductase alone which is inactivated. No inactivation of the Neurospora nitrate reductase was produced by NAD(P)H alone and also in the presence of FAD. The lack of effect of the inactivating enzyme and NAD(P)H on the FADH 2-nitrate reductase of Neurospora suggests some difference in its structure or conformation from that of the maize enzyme. A low level of cyanide (0.4 μM) markedly enhanced the action of NAD(P)H on the maize enzyme. Cyanide at a higher level (6 μM) did give inactivation of the Neurospora nitrate reductase in the presence of NADPH and FAD. The maize nitrate reductase, when partially inactivated by NADH and cyanide, was not altered as a substrate for the inactivating enzyme. The maize root inactivating enzyme was also shown to inactivate the nitrate reductase (NADH) in the pea leaf. It had no affect on the nitrate reductase from either Pseudomonas denitrificans or Nitrobacter agilis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call