Abstract

BackgroundThe significance of malaria transmission occurring outdoors has risen even in areas where indoor interventions such as long-lasting insecticidal nets and indoor residual spraying are common. The actual contamination rates and effectiveness of recently developed outdoor mosquito control device, the mosquito landing box (MLB), on densities and daily survival of host-seeking laboratory Anopheles arabiensis, which readily bites humans outdoors was demonstrated.MethodsExperiments were conducted in large semi-field systems (SFS) with human volunteers inside, to mimic natural ecosystems, and using MLBs baited with natural or synthetic human odours and carbon dioxide. The MLBs were dusted with 10 % pyriproxyfen (PPF) or entomopathogenic fungi (Metarhizium anisopliae) spores to mark mosquitoes physically contacting the devices. Each night, 400 laboratory-reared An. arabiensis females were released in one SFS chamber with two MLBs, and another chamber without MLBs (control). Mosquitoes were individually recaptured while attempting to bite volunteers inside SFS or by aspiration from SFS walls. Mosquitoes from chambers with PPF-treated MLBs and respective controls were individually dipped in water-filled cups containing ten conspecific third-instar larvae, whose subsequent development was monitored. Mosquitoes recaptured from chambers with fungi-treated MLBs were observed for fungal hyphal growth on their cadavers. Separately, effects on daily survival were determined by exposing An. arabiensis in chambers having MLBs treated with 5 % pirimiphos methyl compared to chambers without MLBs (control), after which the mosquitoes were recaptured and monitored individually until they died.ResultsUp to 63 % (152/240) and 43 % (92/210) of mosquitoes recaptured inside treatment chambers were contaminated with pyriproxyfen and M. anisopliae, respectively, compared to 8 % (19/240) and 0 % (0/164) in controls. The mean number of larvae emerging from cups in which adults from chambers with PPF-treated MLBs were dipped was significantly lower [0.75 (0.50–1.01)], than in controls [28.79 (28.32–29.26)], P < 0.001). Daily survival of mosquitoes exposed to 5 % pirimiphos methyl was nearly two-fold lower than controls [hazard ratio (HR) = 1.748 (1.551–1.920), P < 0.001].ConclusionHigh contamination rates in exposed mosquitoes even in presence of humans, demonstrates potential of MLBs for controlling outdoor-biting malaria vectors, either by reducing their survival or directly killing host-seeking mosquitoes. The MLBs also have potential for dispensing filial infanticides, such as PPF, which mosquitoes can transmit to their aquatic habitats for mosquito population control.

Highlights

  • The significance of malaria transmission occurring outdoors has risen even in areas where indoor interventions such as long-lasting insecticidal nets and indoor residual spraying are common

  • The mosquito landing box (MLB) have potential for dispensing filial infanticides, such as PPF, which mosquitoes can transmit to their aquatic habitats for mosquito population control

  • Use of long-lasting, insecticide-treated nets (LLINs) and indoor residual spraying (IRS) against indoor-biting and indoor-resting malaria vectors has significantly lowered the burden of malaria transmission through personal and communal protection [4,5,6,7,8]

Read more

Summary

Introduction

The significance of malaria transmission occurring outdoors has risen even in areas where indoor interventions such as long-lasting insecticidal nets and indoor residual spraying are common. Use of long-lasting, insecticide-treated nets (LLINs) and indoor residual spraying (IRS) against indoor-biting and indoor-resting malaria vectors has significantly lowered the burden of malaria transmission through personal and communal protection [4,5,6,7,8]. Despite these gains, there is ongoing transmission, a significant proportion of which occurs outdoors and is not directly preventable using quality-assured indoor interventions such as LLINs or IRS [9]. Amongst the candidate products that have been proposed and tested are: (1) spatial repellents which have proven effective for practical community uses either in vapour or aerosol formats [19,20,21]; (2) topical repellents such as DEET [22, 23]; (3) insecticidal treated clothing [24, 25]; (4) insecticide treated cattle [26, 27]; (5) larval source management [28, 29]; and, (6) toxic sugar baits [30, 31]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.