Abstract

The effect of a very high CO2 mole fraction (27000–35000 μmol mol−1) on photosynthesis and water relations was studied during the dry and the rainy season in plants of Spatiphylum cannifolium (Dryand.) Schott and Bauhinia multinervia (H.B.K.) DC. growing near natural cold CO2 springs. Xylem water potential in plants of both species was lowered by drought, high CO2 growth‐concentration decreasing it further in S. cannifolium. In plants of both species growing under high CO2 concentration photosynthetic rates measured at a CO2 mole fraction of 1000 μmol mol−1 were higher than in plants growing at ambient CO2 mole fraction and measured at 350 μmol mol−1. The response was the result of a direct effect of CO2 on the photosynthetic machinery. Changes in carboxylation efficiency in response to high CO2 were found during the rainy season, with an increase in S. cannifolium and a decrease in B. multinervia; a significant interaction between growth CO2 concentration and season in B. multinervia resulted from significant effects of both factors. An increase in intrinsic water‐use efficiency due to high CO2 was determined in both species by an increase in photosynthetic rate as well as a decrease in leaf conductance. In high‐CO2 plants of S. cannifolium a 71% decrease in stomatal density and 73% in stomatal index suggested that CO2 affected stomatal initiation, whereas in B. multinervia an 85% decrease in stomatal index and a 72% decrease in stomatal density indicated that CO2 influenced stomatal initiation as well as epidermal cell expansion. Our results indicate that very high CO2 concentrations did not inhibit photosynthesis in these species, and that growth under high CO2 allowed plants to attain carbon balances higher than those of plants growing under low CO2. This was particularly so during the dry season, since the photosynthetic rates at the corresponding ambient concentration were higher in plants nearer the springs, and carboxylation efficiency and some stomatal characteristics of both species apparently acclimated to high CO2, but patterns were not consistent and bore no obvious relationship to photosynthetic capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call