Abstract

Alfalfa (approximately 31% DM) was untreated or treated with a silage inoculant containing the lactic acid bacteria Lactobacillus lactis, Lactobacillus plantarum L-54, and L. plantarum Aber F1. The inoculant was added at a normal and a high dose as a freeze-dried powder that had been mixed with water just prior to application, or it was grown with nutrients the day before and added as a fresh culture. The actual application rate of lactic acid bacteria was 1.19×105 for the normal dose, 4.30×105 for the high dose, and 5.10×105 for the fresh culture. All inoculated silages showed a faster increase in the rate of lactic acid production and a decrease in the drop in pH over the first 24h of ensiling compared with untreated silage. The effect was greatest for silage treated with the fresh culture and was supported by the fact that this treatment had numbers of lactic acid bacteria that increased faster than in other treatments. Inoculation also generally resulted in a fermentation profile that was more homolactic (more lactic acid and less acetic acid, ethanol, and NH3-N) than for untreated silage, but the effect was greatest for the fresh culture. Inoculation did not affect in vitro neutral detergent fiber digestion or the concentrations of neutral detergent fiber or total N in silages. The recovery of dry matter was greater in silage that was treated with a high level of the freeze-dried culture or with the fresh culture when compared with the untreated control. This study showed that application of a silage inoculant as a freeze-dried culture or as a fresh culture resulted in alfalfa silage with a more homolactic fermentation profile. The effect was greatest from addition of the fresh culture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.