Abstract
Objective Ischemia/reperfusion (IR)-induced myocardial arrhythmias are a common clinical manifestation in patients with myocardial infarction after reperfusion therapy. Mitochondria play a critical role in cardioprotection. Here, we investigated the effects of KH176 as a new mitochondrial-acting drug on IR-induced ventricular arrhythmias, mitochondrial function, pro-inflammatory cytokines production, and the role of mitochondrial ATP-dependent K (mK-ATP) channels in rats’ hearts. Methods The hearts of Sprague Dawley rats (250 ± 30 g; 36 rats) underwent 35 min of ischemia followed by 120 min of reperfusion. Myocardial in vivo ischemia was induced by ligation of the left anterior descending coronary artery. KH176 at concentrations of 10 and 50 μM was intraperitoneally injected to rats 10 min before reperfusion onset. Ventricular arrhythmias were quantified during reperfusion, and cardiac mitochondrial function, nitric oxide, and pro-inflammatory cytokines levels were measured by fluorometric, spectrophotometric, and ELISA techniques. Results Administration of KH176 significantly reduced lactate-dehydrogenase release and the number, duration, incidence, and severity of ventricular arrhythmias induced by reperfusion injury. IR-induced elevation of mitochondrial reactive oxygen species production, and cardiac pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, as well as reduction of mitochondrial membrane potential, ATP and nitric oxide levels were significantly restored by KH176 at 50 μM. However, the blockade of mK-ATP channels by 5-hydroxydecanoate considerably inhibited the effects of KH176 on all parameters except nitric oxide. Conclusion KH176 showed strong cardiac antiarrhythmic effects on IR-induced injury through improving mitochondrial function and reducing inflammatory and oxidative responses, and these protective effects are mediated by cardiac mK-ATP channels.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.