Abstract

The effects of a grooved titanium-coated substratum on epithelial (E) cell behavior were studied in vitro and in vivo. V-shaped grooves, 10 microns deep, were produced in silicon wafers by micromachining, a process which was developed for the fabrication of microelectronic components. The grooved substrata were replicated in epoxy resin and coated with 50 nm of titanium. More E cells were found attached to the grooved titanium surfaces than to adjacent smooth surfaces. In comparison to the smooth surfaces where clusters of E cells were randomly oriented, on the grooved surfaces, clusters of E cells were markedly oriented along the long axis of grooves. Grooved and smooth titanium-coated epoxy implants were placed percutaneously in the parietal area of rats. Electron and light microscopic observations indicated that E cells were tightly attached to the implant surfaces and this attachment is through basal lamina-like and hemidesmosome-like structures. In the grooved portion of the implant, E cells interdigitated into the grooves and had rounded nuclei. Histomorphometric measurements indicated that there was a shorter length of epithelial attachment, longer length of connective tissue attachment, and less recession in the grooved, compared to the smooth portion of implants after 7 and 10 days. These results indicate that horizontal grooves produced by micromachining can significantly impede epithelial downgrowth on titanium-coated epoxy implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call