Abstract

In the Eastern Alps, the Dachstein massif with a height of almost 3000 m is an ideal location for investigating the effects of changes in altitude on the human body. Within a few minutes, a cable car facilitates an ascent from 1702 m to 2700 m above sea level, where the partial pressure of oxygen is about 550mmHg (as compared to 760mmHg at sea level). In this study, ten healthy subjects performed a reaction time task at 990 m and 2700 m in altitude. The subjects were instructed to perform a right hand index finger movement as fast as possible after a green light flashed (repeated 50 times). The corresponding electrocardiogram (ECG) and the electroencephalogram (EEG) were recorded. From the ECG heart rate and heart rate variability measures in the time and frequency domain were calculated. An event-related desynchronization/synchronization (ERD/ERS) analysis was performed with the EEG data. Finally, the EEG activity and the ECG parameters were correlated. The study showed that with the fast ascent to 2700 m the heart rate increased and the heart rate variability measures decreased. The correlation analysis indicated a close relationship between the EEG activity and the heart rate and heart rate variability. Furthermore it was shown for the first time that the beta ERS in the 14 to 18Hz frequency range (post-movement beta ERS) was significantly reduced at high altitude (see Figure 1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call