Abstract

Bottom water circulation in a bowl-shaped, or concave, abyssal basin driven by upwelling is investigated using a simple numerical model. In a basin wholly contained in one hemisphere, the concave bottom geometry introduces a strong topographic beta effect around the rim of the basin. Also, the character of the circulation is fundamentally altered from the circulation pattern in a flat bottom basin, where a sluggish northeastward interior flow is compensated by a strong western boundary current, to a basinwide cyclonic recirculation of a substantially greater strength without western intensification. In contrast, circulation in a similar basin that straddles the equator fails to show a significant difference from the circulation in a flat bottom basin. This dichotomy between equatorial and midlatitude basins can be understood in terms of the geometry of the underlying geostrophic contours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.