Abstract

A chronic compression of the dorsal root ganglion (CCD) produces ipsilateral cutaneous hyperalgesia that is associated with an increased excitability of neuronal somata in the compressed ganglion, as evidenced by spontaneous activity and a lower rheobase. We searched for differences in the properties of voltage-gated Na+ and K+ currents between somata of CCD- and control (unoperated) rats. CCD was produced in adult rats by inserting two rods through the intervertebral foramina, one compressing the L4, and the other, the ipsilateral, L5 dorsal root ganglion (DRG). After 5-9 days, DRG somata were dissociated and placed in culture for 16-26 h. Cutaneous neurons of medium size (35-45 microm), Fluorogold-labeled from the hindpaw, were selected for whole cell patch-clamp recording of action potentials and ion currents. In comparison with control neurons, CCD neurons had steady-state activation curves for TTX-sensitive (TTX-S) Na+ currents that were shifted in the hyperpolarizing direction, and CCD neurons had enhanced TTX-resistant (TTX-R) current. CCD neurons also had smaller, fast-inactivating K+ currents (Ka) at voltages from -30 to 50 mV. The reduction in Ka, the hyperpolarizing shift in TTX-S Na+ current activation, and the enhanced TTX-R Na+ current may all contribute to the enhanced neuronal excitability and thus to the pain and hyperalgesia associated with CCD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call