Abstract

Filtrates from the bacterium Shewanella sp. IRI-160 (termed IRI-160AA) have been shown to inhibit population growth and kill a variety of dinoflagellates grown in culture. Here we test the immediate efficacy of IRI-160AA in laboratory microcosms initiated from three natural dinoflagellate blooms (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum). We measured target dinoflagellate abundance, total chlorophyll-a, photosystem II (PSII) photochemistry, and changes to the prokaryotic and eukaryotic community composition over 2–3 days of IRI-160AA incubation. Naked dinoflagellates were impacted more, while abundance of the thecate P. minimum was not affected. However, dinoflagellate growth inhibition was generally lower than that observed in uni-algal cultures, and took longer to occur. Eukaryotic community composition in IRI-160AA treated microcosms was significantly different from control incubations, and was driven predominantly by increases in heterotrophic protists (e.g. Euplotes sp. and Paraphysomonas sp.). Similarly, significant changes to the prokaryotic community structure were evident. Microcosms of G. instriatum with higher algicide concentrations indicated that algicidal activity was enhanced in a dose dependent manner. Furthermore, total ciliate abundance as well as a bactivorous chyrsophyte (Paraphysomonas sp.) increased in a dose dependent manner. Total diatom abundance increased at lower IRI-160AA concentrations, but increased less with increasing dose. Overall, the bio-activity of IRI-160AA on naturally occurring dinoflagellates in mixed natural microbial communities is encouraging from the applied perspective of using the active compound(s) in IRI-160AA as natural agent(s) to manage harmful dinoflagellate blooms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.