Abstract

Several aspects of the human nervous system and associated motor and cognitive processes have been reported to be modulated by extremely low-frequency (ELF, < 300 Hz) time-varying Magnetic Fields (MF). Due do their worldwide prevalence; power-line frequencies (60 Hz in North America) are of particular interest. Despite intense research efforts over the last few decades, the potential effects of 60 Hz MF still need to be elucidated, and the underlying mechanisms to be understood. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to characterize potential changes in functional brain activation following human exposure to a 60 Hz MF through motor and cognitive tasks. First, pilot results acquired in a first set of subjects (N=9) were used to demonstrate the technical feasibility of using fMRI to detect subtle changes in functional brain activation with 60 Hz MF exposure at 1800 μT. Second, a full study involving a larger cohort of subjects tested brain activation during 1) a finger tapping task (N=20), and 2) a mental rotation task (N=21); before and after a one-hour, 60 Hz, 3000 μT MF exposure. The results indicate significant changes in task-induced functional brain activation as a consequence of MF exposure. However, no impact on task performance was found. These results illustrate the potential of using fMRI to identify MF-induced changes in functional brain activation, suggesting that a one-hour 60 Hz, 3000 μT MF exposure can modulate activity in specific brain regions after the end of the exposure period (i.e., residual effects). We discuss the possibility that MF exposure at 60 Hz, 3000 μT may be capable of modulating cortical excitability via a modulation of synaptic plasticity processes.

Highlights

  • Human exposure levels to man-made time-varying magnetic fields (MF) have significantly increased since the industrial revolution

  • Field Status Questionnaire (FSQ) results showed that subjects in both groups were unable to judge whether or not they were being exposed or control exposed to the MF (χ2 = 2.8, df = 1, p > 0.05) and none of the subjects in either group had a high confidence level in their judgements

  • Using functional Magnetic Resonance Imaging (fMRI) to quantify brain functional activation during two different tasks before and after exposure to a 60 Hz, 3000 μT MF, we have shown significant differences in task-dependant brain areas

Read more

Summary

Introduction

Human exposure levels to man-made time-varying magnetic fields (MF) have significantly increased since the industrial revolution. Studies focusing on human motor control have demonstrated that ELF MF exposure can have an impact on motor behaviour in healthy volunteers, such as modifications in physiological tremor intensity and in spontaneous standing balance during exposure to 60 Hz and pulsed ELF MF respectively [14,15,16,17] Organizations such as the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE) publish recommendations concerning maximum levels for safe exposure to ELF MF in order to protect both the general public and workers [18,19].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call