Abstract

Introduction: Intake of 7-methylxanthine (7-MX), an adenosine receptor (AR) antagonist, has been shown to inhibit school myopia in children and deprivation myopia in rhesus monkeys, but the underlying mechanisms are not known. Also retinal dopamine seems to be involved in the control of eye growth, and in the brain, ARs and dopamine receptors interact widely by heteromerization. We have studied whether 7-MX can inhibit deprivation myopia also in chickens and whether inhibition may involve the retinal dopamine system. Methods: 7-MX was applied by either tube-feeding (100 µg/g body weight, twice a day) or intravitreal injection (12.5 µg, every other day). Forty-eight 2-week-old chicks wore unilateral diffusers and were randomly assigned to either the tube-feeding group (involving 7-MX, vehicle [xanthan gum], or no feeding, for 13 days) or the intravitreal injection group (involving 7-MX, vehicle, or DMSO, for 8 days). Refractions (REs), ocular biometry (AL, VCD), and scleral and choroidal thickness (ChT) were measured before and after treatment. Dopamine and dihydroxyphenylacetic acid (DOPAC) content were determined in retina and vitreous by HPLC at the end of the experiments. Results: No matter how 7-MX was applied, it did not inhibit deprivation myopia in chicks. No significant differences were observed in RE, VCD, AL, and scleral fibrous layer thickness. Feeding 7-MX produced more choroidal thinning in the open contralateral eye compared to control eyes in the vehicle-fed group (–40 ± 14 vs. –1 ± 7 µm, unpaired t test, p < 0.05). DOPAC and dopamine concentration in vitreous and DOPAC concentration in retina did not change with 7-MX. Vitreal dopamine content was significantly decreased in deprived eyes in the groups fed with the vehicle xanthan gum (paired t test, p < 0.01) but not in 7-MX-treated eyes, perhaps indicating a small effect of 7-MX on dopamine. Conclusions: In our study, 7-MX had no effect on DM in chicks and only minor effects on ChT and retinal dopamine. It remains unclear whether 7-MX inhibits myopia through a retinal mechanism or whether it acts directly on choroid and sclera. In the latter case, the finding that myopia is suppressed in mammals but not birds might be explained by differences in scleral structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.