Abstract

Labeled nucleic acid probes are used as diagnostic tools by detecting changes in gene expression upon hybridization to target RNAs or DNAs that are related to specific disease genes. 5-[S-(2, 4-Dinitrophenyl)-thio]-2'-deoxyuridine analog represents an excellent nucleic acid label, containing the DNP group which functions both as a probe and as a precursor for the introduction of a variety of fluorescent groups. This study describes thermal denaturation hybridization experiments with oligonucleotides containing the 5-[S-(2,4-dinitrophenyl)-thio]-2'-deoxyuridine analog. Using molecular modeling techniques, the effects of this analog on the hybrid structure and stability were examined, including (i) analog conformation, (ii) hydrogen bonding, (iii) stacking interactions and (iv) hybrid helical geometry. This analog does not prohibitively affect the hybrid thermal stability and incorporation of the analog does not compromise the structural integrity of the double helix. In particular, the sequence-dependence of the analog effects and the dependence on the modification site relative to the end(s) of the helix were investigated. Findings described here should provide guidelines in the rational design of nucleic acid probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.