Abstract
An important limitation of classical antipsychotic drugs such as haloperidol (HAL) is their liability to induce extrapyramidal motor symptoms acutely and tardive dyskinetic syndromes when given chronically. These effects are less likely to occur with newer antipsychotic drugs, an attribute that is often thought to result from their serotonin-2 (5-HT 2) receptor antagonistic properties. In the present study, we used selected doses of the 5-HT 2A antagonist M100,907, the 5-HT 2C antagonist SB242,084 and the mixed 5-HT 2A/C antagonist ketanserin to re-examine the respective roles of 2A vs. 2C 5-HT 2 receptor subtypes in both acute and chronic motor effects induced by HAL. Acutely, SB242,084 (0.5 mg/kg) reduced HAL-induced catalepsy, while M100,907 (0.5 mg/kg) and ketanserin (1 mg/kg) were without effect. None of the drugs reduced HAL-induced Fos expression in the striatum or frontal cortex, and M100,907 actually potentiated HAL-induced Fos expression in the n. accumbens. In rats chronically treated with HAL, both ketanserin and SB242,084 attenuated vacuous chewing movements, while M100,907 had no effect. In addition, 5-HT 2C but not 5-HT 2A mRNA levels were altered in several brain regions after chronic HAL. These results highlight the importance of 5-HT2 2C receptors in both acute and chronic motoric side effects of HAL, and suggest that 5-HT 2C antagonism could be targeted as a key property in the development of new antipsychotic medications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.