Abstract
The deep layers of the superior colliculus (DLSC) and the dorsal periaqueductal gray matter (DPAG) have been implicated in the control of defensive-like behaviors. Electrical and chemical stimulation of these structures elicits fear and escape behaviour, expressed by immobility (freezing) and wild running, followed by jumps and rapid rotations. There is evidence that the neural substrates responsible for defensive behavior in this level of the midbrain tectum (MT) may also be responsible for fear-induced analgesia. This study was aimed at examining the characteristics of the analgesia that follows the defense-oriented reactions induced by electrical midbrain tectum stimulation at freezing and escape thresholds. The animals were submitted to the tail-flick test, following the induction of the defensive behavioral responses. The obtained results show that the antinociception that follows the freezing and escape behaviours were not antagonized by MT microinjections of the opioid antagonist naltrexone. These results emphasize previous data showing the non-opioid nature of this analgesia. On the other hand, the fear-induced analgesia was inhibited by microinjections of the serotonergic blockers, methysergide and ketanserin in the MT. Since methysergide is a non-specific antagonist of 5-HT receptors and ketanserin acts with a high degree of specificity at 5-HT 2 receptors the present results suggest that activation of 5-HT 2 receptors may be implicated in the antinociception induced by midbrain tectum stimulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.