Abstract
5-Fluorouracil (5-FU) inhibits the enzyme thymidylate synthetase (TS) which results in inhibition of DNA synthesis. 5-FU is teratogenic in many species, inducing cleft palate, limb, and tail defects. In the present study, gestation day (GD) 14 embryonic rat craniofacial explants were exposed to 5-FU in organ culture with increasing concentrations and durations of exposure. Palates exposed to 5-FU were morphologically abnormal and craniofacial shape, size, and palatal fusion pattern were affected with the severity of effects dependent on concentration and duration of exposure. Cleft palate was induced in vitro as opposing palates overlapped in a narrowed oral cavity. Palates exposed to higher levels of 5-FU were growth inhibited, but fused even though proliferation ceased and few cells were available to participate in elevation and fusion. This was demonstrated as a biphasic concentration-response profile for palatal fusion in which 0.05 to 0.15 micrograms 5-FU/ml produced decreasing rates of palatal fusion, while exposure to 0.15 to 3.0 micrograms/ml resulted in progressively increasing rates of fusion. The effects of 5-FU were detected biochemically as a reduction in TS activity which was concentration and time dependent during the first 12 hours, with a return to control levels by 24 hours. During the first day, 5-FU did not alter protein levels, but DNA levels significantly decreased at the high concentration, 2.0 micrograms/ml. After 5 days in culture, both DNA and protein decreased with increasing 5-FU concentration and duration of exposure. Also by the end of the culture period, 3H-TdR incorporation had decreased in a concentration dependent manner. It is concluded that progressive inhibition of proliferation and growth in organ culture results in two different morphological outcomes: cleft palate resulting from a narrowed oral cavity and increased incidence of anterior palatal fusion under conditions of strong growth reduction. This study demonstrates that elevation and fusion can occur in the absence of growth and proliferation. Based on these observations, severe inhibition of growth or proliferation would not necessarily be sufficient to induce cleft palate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.