Abstract

Two different space grade silicone rubbers were irradiated by an electron flux of 400 keV. The irradiation impact strongly depends on the chemical structure of rubbers (one reinforced with MQ resins, and the other one functionalized with phenyl groups at the silicon atoms and reinforced with silica). The irradiated rubbers were studied by means of solvent swelling, solid-state 29Si NMR, and ATR–FTIR spectroscopy. Physical properties were evaluated by thermal (differential scanning calorimetry), mechanical (dynamic mechanical analysis), and thermo-optical (ultraviolet–visible–near infrared spectroscopy) analyses. The formation of silicium T units and Si–CH2–Si networks were evidenced by 29Si NMR, and the increase of the glass transition temperature and of modulus reflect the substantial increase in the macromolecular chain rigidity of the irradiated material. Dramatic damages of mechanical properties were observed, depending on the reinforced materials used. Slight changes of thermo-optical properties were highlighted independently to the initial chemical structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.