Abstract

The electronic and magnetic properties of MoS2 nanoribbons doped with 3d transitional metals (TMs) were investigated using first-principles calculations. Clean armchair MoS2 nanoribbons (AMoS2NRs) are nonmagnetic semiconductors whereas clean zigzag MoS2 nanoribbons (ZMoS2NRs) are metallic magnets. The 3d TM impurities tend to substitute the outermost cations of AMoS2NRs and ZMoS2NRs, which are in agreement with the experimental results reported. The magnetization of the 3d-TM-impurity-doped AMoS2NRs and ZMoS2NRs is configuration dependent. The band gap and carrier concentration of AMoS2NRs can be tuned by 3d-TM doping. Fe-doped AMoS2NRs exhibit ferromagnetic characteristics and the Curie temperature (T(C)) can be tuned using different impurity concentrations. Co-doped ZMoS2NRs are strongly ferromagnetic with a T(C) above room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.