Abstract

The bulking agent plays an important role in aerobic composting, but their shape, porosity, and homogeneity need to be optimized. In the present work, a bulking agent with a uniform shape was prepared by 3D printing to explore its influence on physicochemical parameters, microbial community succession, and gene abundance of carbohydrate-active enzymes (CAZymes) in swine manure aerobic composting. The results showed that adding 3D-printed bulking agents can increase maximum temperature, prolong the thermophilic period, and improve the degradation rate of volatile solids, which was attributed to ameliorative air permeability by the porous 3D-printed bulking agent. The abundances of some pathogenic bacteria decreased and CAZymes genes increased respectively in response to the addition of the 3D-printed bulking agent, implying it has a certain positive effect on improving the safety of compost products and promoting the degradation of organic matter. In summary, the 3D-printed bulking agent has good application potential in laboratory-scale aerobic composting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call