Abstract

Autophagy is an intracellular degradation system that disassembles cytoplasmic components through autophagosomes fused with lysosomes. Recently, it has been reported that autophagy is associated with cardiovascular diseases, including pulmonary hypertension, atherosclerosis, and myocardial ischemia. However, the involvement of autophagy in hypertension is not well understood. In the present study, we hypothesized that excessive autophagy contributes to the dysfunction of mesenteric arteries in angiotensin II (Ang II)-induced hypertensive mice. Treatment of an autophagy inhibitor, 3-methyladenine (3-MA), reduced the elevated blood pressure and wall thickness, and improved endothelium-dependent relaxation in mesenteric arteries of Ang II-treated mice. The expression levels of autophagy markers, beclin1 and LC3 II, were significantly increased by Ang II infusion, which was reduced by treatment of 3-MA. Furthermore, treatment of 3-MA induced vasodilation in the mesenteric resistance arteries pre-contracted with U46619 or phenylephrine, which was dependent on endothelium. Interestingly, nitric oxide production and phosphorylated endothelial nitric oxide synthase (p-eNOS) at S1177 in the mesenteric arteries of Ang II-treated mice were increased by treatment with 3-MA. In HUVECs, p-eNOS was reduced by Ang II, which was increased by treatment of 3-MA. 3-MA had direct vasodilatory effect on the pre-contracted mesenteric arteries. In cultured vascular smooth muscle cells (VSMCs), Ang II induced increase in beclin1 and LC3 II and decrease in p62, which was reversed by treatment of 3-MA. These results suggest that autophagy inhibition exerts beneficial effects on the dysfunction of mesenteric arteries in hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.