Abstract

IntroductionAlginate/gelatin hydrogel (Alg-Gel) scaffold has been applied in tissue engineering, but the research on its application in dental tissues regeneration is still lacking. We investigated the effect of this scaffold on human dental pulp stem cells (hDPSCs). MethodshDPSCs were cultured in both Alg-Gel and 3D-printed Alg-Gel scaffolds. Cell growth and adhesion were compared using fluorescein isothiocyanate–phalloidin staining and scanning electron microscopic micrographs. Changes in the proliferation in hDPSCs cultured in the complete culture medium containing aqueous extracts of the Alg-Gel or 3D-printed Alg-Gel scaffolds were examined using Cell Counting Kit-8 assay and flow cytometry analysis. Cells were cultured in the mineralization medium containing aqueous extracts of the Alg-Gel or 3D-printed Alg-Gel scaffolds for 7 or 14 days, and the differentiation of cells was shown by alizarin red S staining and alkaline phosphatase staining. The messenger RNA and protein expression of mineralization-related genes were detected with real-time polymerase chain reaction and Western blotting. Elemental analysis was used to test the material extract composition. ResultsMore cells were grown and adhered to the 3D-printed Alg-Gel scaffolds than the Alg-Gel scaffolds. The aqueous extracts of 3D-printed scaffolds can promote cell proliferation, and compared with Alg-Gel scaffolds, the extracts of 3D-printed scaffolds were more effective. Compared with the negative control group, 3D-printed Alg-Gel scaffold and Alg-Gel scaffold aqueous extracts promoted osteogenic/odontoblastic differentiation of hDPSCs with the enhanced formation of bone-like nodules and the alkaline phosphatase staining. The expression of mineralization-related genes was also up-regulated. 3D-printed scaffold aqueous extract contained more calcium and phosphorus ions than the Alg-Gel scaffold. ConclusionsThese findings suggest that compared with the Alg-Gel scaffold, 3D-printed Alg-Gel is more suitable for the growth of hDPSCs, and the scaffold extracts can better promote cell proliferation and differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call