Abstract

The 2n-pollen grains formed by first-division restitution without crossover (FDR-NCO) are unique breeding tools, since they can transmit almost 100% of non-additive genetic effects from the parent to the progeny. FDR-NCO gametes are considered superior to those formed by FDR with crossing over (FDR-CO), which can pass on to the progenies approximately 80% of the heterozygosity and a large fraction of the epistasis. However, 2n-pollen formation by FDR-NCO mechanism requires the incorporation (in homozygous condition) of at least two recessive alleles. In the present work, 40 tetraploid families derived from complete 4x-2x factorial crosses were evaluated under short-day conditions to verify whether or not the postulated genetic superiority of FDR-NCO over FDR-CO gametes holds true for eight quantitative traits in potato. Families were derived from crosses between four 4x commercial cultivars, and a random sample of ten diploid Solanum phureja-haploid S. tuberosum hybrids producing 2n-pollen by either FDR-CO or FDR-NCO. The results indicated no significant superiority of FDR-NCO over FDR-CO families for total tuber yield (TTY) and six other traits (haulm maturity – HM; plant vigor – PV; plant uniformity – PU; eye depth – ED; number of tubers per hill – NTH; and commercial over total yield index – CTI). Based upon cytological observations, the FDR-CO and FDR-NCO gametes are expected to be genetically equivalent for all loci between the centromeres and the chromosomal site of maximum recombination. In our experiment, differences between FDR-CO- and FDR-NCO-derived progenies were not observed for TTY. Therefore, our results can be interpreted as additional evidence for the hypothesis that genes with major effect on TTY expression might have a physical location between centromeres and proximal crossovers in the potato chromosomes. In addition, a similar trend was observed for HM, PV, and ED but apparently not for commercial yield – CY (i.e., tubers with more than 33 mm in diameter).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call