Abstract

The reversible, mitochondrial membrane-associated transhydrogenase from the midgut of Manduca sexta (L.) (Lepidoptera: Sphingidae) catalyzes hydride-ion transfer between NADP(H) and NAD(H). The effects of ecdysone and 20-hydroxyecdysone were evaluated and compared to both the NADH-NADP+ and NADPH-NAD+ transhydrogenations. In the direction of NADPH-formation, the developmentally significant transhydrogenations occur as non-energy- or energy-linked reactions. The energy-linked activity couples with either electron transport-dependent NADH or succinate utilization, or ATP hydrolysis by Mg++ -dependent ATPase. Upon the addition of ecdysone alone, all energy-linked reactions in the direction of NADPH formation exhibited a notable increase in activity level over the control reaction. The addition of 20-hydroxyecdysone yielded no significant increase in the activity of any of the transhydrogenations. Synergistic addition of both ecdysone and 20-hydroxyecdysone resulted in no significant effect on transhydrogenase activity. The results of this study make evident a relationship between the presence of ecdysone and 20-hydroxyecdysone on the overall activity of M. sexta midgut mitochondrial transhydrogenations. The potential mediation of the energy-linked mitochondrial transhydrogenations involved with NADPH synthesis through the developmental relationship of ecdysone and 20-hydroxyecdysone is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.