Abstract

The purpose of this study was to investigate the effects of polyoxyethylene 10-oleyl ether and polyoxyethylene 9-lauryl ether, 2 polyoxyethylene alkyl ethers, on the transport and absorption of 2 P-glycoprotein (P-gp) substrates, quinidine and prednisolone, across the intestinal membrane and to elucidate the inhibitory mechanisms of intestinal P-gp by these polyoxyethylene alkyl ethers. For in vitro studies, we used a diffusion chamber method and the Caco-2 cell model. An in situ closed-loop method was used for in vivo study. The 2 polyoxyethylene alkyl ethers, nonionic surfactants, increased the intestinal absorptive transport of quinidine and prednisolone in the diffusion chamber studies, and absorptive permeability was enhanced in the in vitro Caco-2 cell study. Furthermore, these surfactants enhanced the rat intestinal absorption of prednisolone, and we observed no intestinal membrane damage in the presence of these surfactants. Furthermore, these surfactants increased membrane fluidity in intestinal brush border membranes and inhibited P-gp ATPase activity. For in vitro and in vivo studies, these surfactants enhanced the intestinal absorption of quinidine and prednisolone, 2 P-gp substrates. The alteration in intestinal membrane fluidity and the inhibition of P-gp ATPase activity by these 2 polyoxyethylene alkyl ethers may be confirmed as mechanisms of P-gp inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.