Abstract
Sickle cell disease (SCD) is a severe, multisystemic hematological disorder that impacts nearly every major organ in adults. The current approved treatments for SCD directly target mutant hemoglobin or address downstream disease pathology. Several compounds targeting reduction of 2,3-DPG by activation of Pyruvate Kinase-R are currently being evaluated in SCD patients. In this study, we genetically engineered a mouse lacking 2,3-DPG on the Townes SCD mouse model background and evaluated the effects of 2,3-DPG loss on disease pathology. Animals lacking 2,3-DPG showed improvements in hematological markers and reductions in RBC sickling relative to native Townes mice, however, minimal difference in organ damage was observed in 2,3-DPG deficient mice compared to native Townes animals. When animals lacking 2,3-DPG were dosed with a compound designed to increase hemoglobin oxygen affinity, oxygen delivery related toxicity was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.