Abstract

IntroductionThe 2,2-dihydroxymethyl-1-[18F]fluoropropane group, also called 18F-labelled neopentyl glycol side-chain, is a novel 18F-labelling group for positron emission tomography (PET) imaging agents. The aim of using this group is to develop simple purification with solid-phase extraction without high-performance liquid chromatography. However, the effects of the neopentyl 18F-labelling group on the characteristics of brain imaging agents are unknown. Here, we added this side-chain to compounds with an aminostilbene structure to evaluate their effects on the biological properties of aminostilbene as an amyloid-β (Aβ) radioligand. MethodsBiodistributions of four novel 18F-labelled stilbene compounds with different lengths of polyethylene glycol (PEG) linkers, called [18F]Cpd-0, -1, -2, and -4, (PEG = 0, 1, 2, and 4), and [18F]AV-1 in normal mice were evaluated. Metabolite analysis of [18F]Cpd-0 and -1 was performed with mouse plasma and brain. A competitive binding assay of [18F]AV-1 binding to Aβ1–42 fibrils was performed to determine the binding properties of the compounds. Results[18F]Cpd-0, -1, and -2 demonstrated moderate initial brain uptake in mice (3.1–4.2% injected dose/g at 2 min post-injection) followed by fast clearance, and in vivo defluorination of these compounds was negligible. [18F]Cpd-4 exhibited low brain uptake and high bone uptake. Compared with [18F]Cpd-1, the percentage of [18F]Cpd-0 in mouse brain was high at 10 min post-injection. A competitive binding assay revealed partial interference effects by the neopentyl glycol side-chain on binding of stilbene compounds to Aβ1–42 fibrils. ConclusionsAminostilbene compounds with two or fewer PEG linkers containing an 18F-labelled neopentyl glycol side-chain demonstrated preferable pharmacokinetic properties as a brain imaging radioligand in normal mice. These side-chains can be used as an alternative labelling group for imaging agents targeting the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.