Abstract

1. We studied the effects of alpha1- or beta-adrenoceptor stimulation on the contractility of isolated rat ventricular trabeculae at 24 degrees C using the work-loop technique, which simulates the cyclical changes in length and force that occur during the cardiac cycle. Some muscles were injected with fura-2 to monitor the intracellular Ca2+ transient. 2. Comparison of twitch records revealed that peak force was greater and was reached earlier in work-loop contractions than in corresponding isometric contractions. This was attributed to the changes in muscle length and velocity during work-loop contractions, since the Ca2+ transients were largely unaffected by the length changes. 3. Stimulation of alpha1-adrenoceptors (with 100 microM phenylephrine) increased net work, power production, the frequency for maximum work, and the frequency for maximum power production (fopt). The increase in net work was due to the positive inotropic effect of phenylephrine, which was similar at all frequencies investigated (0. 33-4.5 Hz). The increase in fopt was attributed to an abbreviation of twitch duration induced by alpha1-stimulation at higher frequencies (> 1 Hz), even though the twitch became longer at 0.33 Hz. 4. beta-Adrenoceptor stimulation (with 5 microM isoprenaline) produced marked increases in net work, power output, the frequency for net work, and fopt. These effects were attributed both to the positive inotropic effect of beta-stimulation, which was greater at higher frequencies, and to the reduction in twitch duration. beta-stimulation also abolished the frequency-dependent acceleration of twitch duration. 5. The increase in power output and fopt with alpha1- as well as beta-adrenoceptor stimulation suggested that both receptor types may contribute to the effects of catecholamines, released during stress or exercise, although the greater effects of beta-stimulation are likely to predominate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.