Abstract

The thalamus has connections with central autonomic centers involved in cardiovascular control and is enervated by noradrenergic fibers. The excitability of thalamic neurons is due to a reduction of ionic currents mediated by alpha(1)-adrenoceptors. The brain renin- angiotensin system (RAS) and the peptide hormone arginine-vasopressin (AVP) are also involved in the central control of blood pressure, and fluid and electrolyte homeostasis. It has been extensively reported that aminopeptidase A (APA), aminopeptidase B (APB), aminopeptidase N (APN), and vasopressin-degrading cystyl aminopeptidase activity (AVP-DA) play an important role in the regulation of the activity of angiotensins and AVP. We have analyzed the effect of alpha(1)-adrenoceptor blockade by doxazosin on RAS-regulating aminopeptidase activities and AVP-DA in soluble and membrane-bound fractions of male and female rat thalamus. Our results show that alpha(1)-adrenoceptors blockade by doxazosin does not modify the RAS through its degrading peptidases at thalamic level either in male or female rats. However, alpha(1)-adrenoceptors blockade shows gender differences in AVP-DA, increasing in males but not in females, supporting an increased capacity of males against females to degrade AVP and, therefore, to regulate cardiovascular homeostasis, under this pharmacological manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.