Abstract
Abstract1,2‐Butadiene is shown to be a chain terminating/transferring agent in butyllithium‐initiated diene polymerization. The influence of 1,2‐butadiene on the anionic copolymerization of 1,3‐butadiene and styrene is investigated using n‐butyllithium as initiator and tetrahydrofuran or N,N,N′,N′‐tetramethylethylenediamine as polar additive. A decrease of copolymerization rate is observed on the addition of 1,2‐butadiene. On introducing 1,2‐butadiene, the number average molecular weight (Mn) decreases and the molecular weight distribution broadens. The vinyl content of copolymer increases slightly with an increase of 1,2‐butadiene. During the copolymerization, 1,2‐butadiene in the presence of a high ratio of polar additives to n‐butyllithium greatly decreases the copolymerization rate, resulting in a lower value of Mn and a narrower molecular weight distribution than that found for a low ratio of polar additives to n‐butyllithium. This evolution can be explained by the base‐catalyzed isomerization of 1,2‐butadiene to form 1‐butylene in the presence of polar additives. With an increasing amount of 1,2‐butadiene, the vulcanized rubber exhibits an increased rolling resistance and a reduced wet skid resistance owing to the decrease of coupling efficiency. These results further indicate the activity of alkynyllithium derivatives produced by the reaction of alkyllithium and 1‐butyne is less than that of the alkyllithium. Copyright © 2007 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.