Abstract

The effects of α-tocopherol on the oxidative stability and incorporation of deuterium in volatiles were evaluated in linoleic acid-water model systems treated at 60°C by analyzing headspace oxygen depletion, formation of lipid hydroperoxides, and profiles of headspace volatiles. Deuterium oxide accelerated the rates of linoleic acid oxidation compared to samples in deuterium-free water. As the concentration of α-tocopherol increased from 0 to 1500 ppm, the consumption of headspace oxygen and the formation of volatiles decreased, whereas the contents of lipid hydroperoxides did not decrease in the linoleic acid-water system. The mass to charge ratios (m/z) of volatiles in linoleic aciddeuterium oxide were significantly higher than those with deuterium oxide-free water. Generally, the presence of α-tocopherol decreased the mass to charge ratios (m/z) of volatiles including pentanal, hexanal, t-2-heptenal, and 2-octenal, implying that α-tocopherol may be involved in the aldehyde formation from lipid oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.