Abstract

Helicoverpa armigera is a global agricultural pest of serious concern. Continued use of chemical insecticides as control measures has raised grave health and environment concerns, necessitating a search for botanicals as safe alternatives. The current study investigates the effects of ?-sitosterol, a bioactive phytocomponent in Thevetia neriifolia, on the growth and development, as well as on midgut enzymes of H. armigera. Dietary ?-sitosterol produced dose-dependent systemic toxicity and growth inhibitory effects in H. armigera; the most significant effects were obtained with 10 ?g/mL dietary ?-sitosterol. Higher prepupal and pupal mortality in comparison to larval mortality and a comparatively greater reduction in average weight gained by later instars point to cumulative effects of ?-sitosterol. The delayed effects were ascertained by the 82.05%-57.89% reduction in adult emergence in comparison to 95.02% emergence in controls. Dose-dependent effects of ?-sitosterol were observed as significantly decreased enzyme activities of alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP) in the larval midgut. Suppression of enzyme activity was obtained in the order ALT>AST>ALP. Impaired activity of gut enzymes possibly lowered the energy reserves and affected nutrient transport through the gut epithelium, affecting the growth and development of H. armigera. Our study points to a promising use of ?-sitosterol against H. armigera, although further examination and field studies are needed to ascertain its possible use in control programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call