Abstract

TiO2 thin films were deposited on a glass substrate by the radio frequency magnetron sputtering method, and annealed for 2 h at temperatures of 550°C. Then, 60Co γ rays with different doses were used to irradiate the resulting TiO2 thin films. The surface features of films before and after irradiation were observed by scanning electron microscope (SEM). Simultaneously, the crystal structure and optical properties of films before and after irradiation were studied by X-ray diffraction (XRD), UV–VIS transmission spectrum and Photoluminescence (PL) spectrum, respectively. The SEM analysis shows that the film is smooth with tiny particles on the film surface, and non-crystallization trend was clear after irradiated with γ rays. The XRD results indicated that the structure of the film at the room temperature mainly exists in the form of amorphous and mixed crystal at a sputtering power of 200 W, and non-crystallinity was more obvious after irradiation. Obvious difference can be found for the transmissibility of the irradiated and pre irradiation TiO2 films by the UV-VIS spectra. The color becomes light yellow, and the new absorption edge also appeared at about 430 nm. PL spectra and photocatalysis experiments indicate that the photocatalysis degradation rate of the TiO2 films on methylthionine chloride solution irradiated with the maximum dose can be increased to 90%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.