Abstract
Medium chain fatty acid (MCFA) treatment (0.75% C6, hexanoic; C8, octanoic; C10, decanoic; or equal proportion mixtures of C6:C8:C10:C12 or C8:C10/g; C12 = dodecanoic acid) of aerobically-exposed corn silage on spoilage and pathogenic microbes and rumen fermentation were evaluated in vitro. After 24 h aerobic incubation (37 °C), microbial enumeration revealed 3 log10 colony-forming units (CFU)/g fewer (P = 0.03) wild-type yeast and molds in C8:C10-treated silage than controls. Compared with controls, wild-type enterococci decreased (P < 0.01) in all treatments except the C6:C8:C10:C12 mixture; lactic acid bacteria were decreased (P < 0.01) in all treatments except C6 and the C6:C8:C10:C12 mixture. Total aerobes and inoculated Staphylococcus aureus or Listeria monocytogenes were unaffected by treatment (P > 0.05). Anaerobic incubation (24 h at 39 °C) of ruminal fluid (10 mL) with 0.02 g overnight air-exposed MCFA-treated corn silage revealed higher hydrogen accumulations (P = 0.03) with the C8:C10 mixture than controls. Methane, acetate, propionate, butyrate, or estimates of fermented hexose were unaffected. Acetate:propionate ratios were higher (P < 0.01) and fermentation efficiencies were marginally lower (P < 0.01) with C8- or C8:C10-treated silage than controls. Further research is warranted to optimize treatments to target unwanted microbes without adversely affecting beneficial microbes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.