Abstract

Rat/mouse hemokinin 1 (r/m HK-1) is a novel tachykinin peptide whose biological functions are not fully understood. This work was designed to observe the effects of r/m HK-1 in pain modulation at supraspinal level in mice using tail-flick test. Intracerebroventricular (i.c.v.) administration of r/m HK-1 (0.1, 0.3, 1, 3 nmol/mouse) dose-dependently induced potent analgesic effect (ED 50 = 0.2877 nmol/mouse). When r/m HK-1 co-injected (i.c.v.) with SR140333 (a selective NK 1 receptor antagonist), SR140333 could fully antagonize the analgesic effect of r/m HK-1. The maximal analgesic effect of r/m HK-1 (3 nmol/mouse) could also be reversed by naloxone (i.p., 2 mg/kg). However, i.c.v. low dose administration of r/m HK-1 (10, 3, 1 pmol/mouse) induced hyperalgesia with a “U” shape curve, which means that the maximal hyperalgesic effect appeared at 3 pmol/mouse, and this effect of r/m HK-1 could also be fully blocked by SR140333. Interestingly, [Nphe 1]NC(1–13)NH 2, a selective opioid receptor like-1 (ORL-1) receptor antagonist, could fully reverse the maximal hyperalgesic effect of r/m HK-1 (3 pmol/mouse). In addition, when r/m HK-1 co-injected (i.c.v.) with SR48968 (a selective NK 2 receptor antagonist), SR48968 could hardly affect the nociceptive effects of r/m HK-1 either at nanomole concentration or at picomole concentration. These findings suggested that r/m HK-1 might play an important role in pain modulation at supraspinal level in mice and these effects were first elicited through the activation of NK 1 receptor, subsequently, whether activation of the classical opioid receptor or the ORL1 receptor depending on the dose of i.c.v. administration of r/m HK-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.