Abstract

Microbial and emerging chemical contaminants are unwanted constituents in reclaimed wastewater, due to the health concerns of using the water for agricultural irrigation, aquifer recharges, and potable water. Removal of these contaminants is required but it is currently challenging, given that there is no simple treatment technology to effectively remove the mixture of these contaminants. This study examined the effectiveness of ZnO-assisted photocatalytic degradation of several constituents, including 1,4-dioxane, trihalomethanes (THMs), triclosan (TCS), triclocarban (TCC), antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), under low intensity of UV exposure. E. coli with an ARGs-carrying circular plasmid (pUC19) was used as a model antibiotic resistant bacterium. Our results show that commercial zinc oxide (C-ZnO) assisted photodegradation of 1,4-dioxane, and dehalogenation of THMs, TCS, and TCC, while tetrapodal zinc oxide (T-ZnO) enhanced the dehalogenation of TCS and TCC. Additionally, T-ZnO assisted the photocatalytic inactivation of the E. coli within 6 h and caused structural changes in the plasmid DNA (pUC19) with additional UV exposure, resulting in non-functional AGR-containing plasmids. These results also suggest that higher UV dose is required not only to inactivate ARB but also to damage ARGs in the ARB in order to decrease risks in promoting ARB population in the environment. Overall, our results implicated that, under low UV intensity, ZnO-assisted photocatalysis is a promising alternative to simultaneously remove biological and emerging chemical contaminants in treated wastewater for safe reuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.