Abstract

Landslide inventories are the most important data source for landslide process, susceptibility, hazard, and risk analyses. The objective of this study was to identify an effective method for mapping a landslide inventory for a large study area (19,186 km2) from Light Detection and Ranging (LiDAR) digital terrain model (DTM) derivatives. This inventory should in particular be optimized for statistical susceptibility modeling of earth and debris slides. We compared the mapping of a representative set of landslide bodies with polygons (earth and debris slides, earth flows, complex landslides, and areas with slides) and a substantially complete set of earth and debris slide main scarps with points by visual interpretation of LiDAR DTM derivatives. The effectiveness of the two mapping methods was estimated by evaluating the requirements on an inventory used for statistical susceptibility modeling and their fulfillment by our mapped inventories. The resulting landslide inventories improved the knowledge on landslide events in the study area and outlined the heterogeneity of the study area with respect to landslide susceptibility. The obtained effectiveness estimate demonstrated that none of our mapped inventories are perfect for statistical landslide susceptibility modeling. However, opposed to mapping polygons, mapping earth and debris slides with a point in the main scarp were most effective for statistical susceptibility modeling within large study areas. Therefore, earth and debris slides were mapped with points in the main scarp in entire Lower Austria. The advantages, drawbacks, and effectiveness of landslide mapping on the basis of LiDAR DTM derivatives compared to other imagery and techniques were discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.