Abstract

Simple SummaryPhytogenic feed additives are botanic origin compounds added to animal diets with organoleptic and bioactive properties that produce benefits on performance, health, and welfare, and they contribute to reducing the use of antibiotics based on the antimicrobial properties of many of them. Globally, their use as in-feed additives in pig diets has become more frequent, especially during the weaning period. Weaning is a particularly stressful period for the young pig that is associated with an abrupt change from the mother’s milk to the dry feed and frequent outbreaks of digestive disorders and diarrhea, which is the main cause of mortality at this age. The present study aimed to evaluate the potential of two plant-based feed supplementations to improve pig adaptation to weaning and to reduce the incidence of post-weaning colibacillosis by using an experimental model of disease. Our work showed that both supplements helped piglets fight enterotoxigenic E. coli but probably by means of different modes of action. Whereas the supplement based on essential oils seems to improve the microbiota balance, increasing the fecal lactobacilli/coliforms ratio, the combined supplement of essential oils and non-volatile compounds seems to have anti-inflammatory properties with a reduction in the intestinal damage and an improved immune response.This study evaluates the efficacy of two plant-based feed supplementations to fight colibacillosis in weanlings. A total of 96 piglets (32 pens) were assigned to four diets: a control diet (T1) or supplemented with ZnO (2500 ppm Zn) (T2) or two different plant supplements, T3 (1 kg/t; based on essential oils) and T4 (T3 + 1.5 kg/t based on non-volatile compounds). After one week, animals were challenged with ETEC F4, and 8 days after, one animal per pen was euthanized. Performance, clinical signs, microbial analysis, inflammatory response, intestinal morphology, and ileal gene expression were assessed. ZnO improved daily gains 4 days after challenge, T3 and T4 showing intermediate values (96, 249, 170, and 157 g/d for T1, T2, T3, and T4, p = 0.035). Fecal lactobacilli were higher with T3 and T4 compared to ZnO (7.55, 6.26, 8.71, and 8.27 cfu/gFM; p = 0.0007) and T3 increased the lactobacilli/coliforms ratio (p = 0.002). T4 was associated with lower levels of Pig-MAP (p = 0.07) and increases in villus/crypt ratio (1.49, 1.90, 1.73, and 1.84; p = 0.009). Moreover, T4 was associated with an upregulation of the REG3G gene (p = 0.013; pFDR = 0.228) involved in the immune response induced by enteric pathogens. In conclusion, both plant supplements enhanced animal response in front of an ETEC F4 challenge probably based on different modes of action.

Highlights

  • Weaning is one of the most critical periods in the piglet life, with severe consequences on performance throughout their full productive lifetime

  • Following the hypothesis that it is possible to improve the response of piglets to weaning and to reduce the incidence of post-weaning diarrhea by including phytogenic blends in the diet as an alternative to antimicrobials, the objective of the present study was to evaluate, in weaned piglets, the potential of two plant-based in-feed additives in front of an oral enterotoxigenic Escherichia coli (ETEC) F4 challenge, analyzing their effects on performance, clinical response, immune system, and gut health

  • The results of this study would suggest that both tested plant supplements could help the piglet to fight the ETEC challenges commonly faced after weaning

Read more

Summary

Introduction

Weaning is one of the most critical periods in the piglet life, with severe consequences on performance throughout their full productive lifetime. Piglets are weaned around 21–28 days of life. At this early age, weaning entails a big challenge for the pig, as they are exposed to new social partners, an abrupt dietary change, and an immature immune system [1]. As a consequence of the high stress to which pigs are subjected, a decreased feed intake is frequently observed. These circumstances are associated with a decrease in nutrients supply and their digestive capacity, a low weight gain, and a high diarrhea incidence, which could even lead to death [2]. The emergence of opportunistic pathogens during this stage, such as Escherichia coli, can trigger post-weaning diarrhea (PWD), which is called post weaning enteric colibacillosis [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call