Abstract

BackgroundColistin and tigecycline have both been shown good in vitro activity among multi-drug resistant Acinetobacter baumannii (MDRAB). A comparative study of colistin versus tigecycline for MDRAB pneumonia is lacking.MethodsThe study enrolled adults with MDRAB pneumonia admitted to intensive care units at a referral medical center during 2009–2010. Since there were no standardized minimum inhibitory concentration (MIC) interpretation criteria of tigecycline against A. baumannii, MIC of tigecycline was not routinely tested at our hospital. During the study periods, MIC of colistin was not routinely tested also. We consider both colistin and tigecycline as definite treatments of MDRAB pneumonia. Patients who received tigecycline were selected as potential controls for those who had received colistin. We performed a propensity score analysis, by considering the criteria of age, gender, underlying diseases, and disease severity, in order to match and equalize potential prognostic factors and severity in the two groups.ResultsA total of 294 adults with MDRAB pneumonia were enrolled, including 119 who received colistin and 175 who received tigecycline. We matched 84 adults who received colistin with an equal number of controls who received tigecycline. The two well matched cohorts share similar characteristics: the propensity scores are colistin: 0.37 vs. tigecycline: 0.37, (P = .97); baseline creatinine (1.70 vs. 1.81, P = .50), and the APACHE II score (21.6 vs. 22.0, P = .99). The tigecycline group has an excess mortality of 16.7% (60.7% vs. 44%, 95% confidence interval 0.9% – 32.4%, P = .04). The excess mortality of tigecycline is significant only among those with MIC >2 μg/mL (10/12 vs. 37/84, P = .01), but not for those with MIC ≦ 2 μg/mL (4/10 vs. 37/84, P = .81).ConclusionsOur data disfavors the use of tigecycline-based treatment in treating MDRAB pneumonia when tigecycline and colistin susceptibilities are unknown, since choosing tigecycline-based treatment might result in higher mortality. The excess mortality of tigecycline-based group may be related to higher MIC of tigecycline (> 2 μg/mL). Choosing tigecycline empirically for treating MDRAB pneumonia in the critical setting should be cautious.

Highlights

  • Colistin and tigecycline have both been shown good in vitro activity among multi-drug resistant Acinetobacter baumannii (MDRAB)

  • Though there are no available minimum inhibitory concentration (MIC) interpretation breakpoints of tigecycline against A. baumannii according to the criteria of the Clinical and Laboratory Standards Institute (CLSI) or the European Committee on Antimicrobial Susceptibility Testing (EUCAST) [2], tigecycline have been suggested as an alternative drug of choice in treating MDRAB pneumonia [14]

  • Microbiological studies This study identified A. baumannii by biochemical methods [18] and determined antimicrobial susceptibility by the disk diffusion method for gentamicin, amikacin, ciprofloxacin, levofloxacin, cefepime, ceftazidime, ticarcillin/ clavulanate, meropenem, and ampicillin/sulbactam according to CLSI criteria [19]

Read more

Summary

Introduction

Colistin and tigecycline have both been shown good in vitro activity among multi-drug resistant Acinetobacter baumannii (MDRAB). A comparative study of colistin versus tigecycline for MDRAB pneumonia is lacking. Healthcare-associated infections caused by Acinetobacter baumannii are increasing among patients in intensive care units (ICU) [1,2]. Colistin and tigecycline have been shown to have good in vitro activity against A. baumannii pneumonia isolates, even in carbapenem-resistant isolates [5,6]. Tigecycline presents good in vitro activity against MDRAB isolates [6], and several studies have revealed acceptable clinical responses of tigecycline for MDRAB pneumonia [6,12,13]. In spite of all this, a comparative study of colistin versus tigecycline for MDRAB pneumonia is lacking [6,8,15]. The aim of the current study is to compares the effectiveness and the adverse effects of colistin-based versus tigecyclinebased therapy in treating MDRAB pneumonia

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call