Abstract
The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama is an economically important pest of citrus because it vectors the causal pathogens of huanglongbing (HLB) or citrus greening disease. Biological control is an important component of citrus pest management but requires consistent strengthening of its impact on pest complex. The brown lacewing Sympherobius barberi Banks is a known predator of several insect pests from Asia, Europe, and America. However, there is not much information about its effectiveness against D. citri. We evaluated S. barberi against the D. citri and frozen eggs of the Mediterranean flour moth Ephestia kuehniella, the latter is a common diet used for rearing predators in laboratories. Adult S. barberi successfully fed on D. citri eggs and nymphs under both light and dark conditions. Diaphorina citri was also suitable for the development and reproduction of S. barberi except for slightly prolonged larval development compared with E. kuehniella diet. The egg hatch from the total number of eggs laid on D. citri and E. kuehniella diets averaged 65% and 52%, respectively. Females laid 64% eggs on dimpled white paper compared to 36% combined on plain paper and leaves of citrus, orange jasmine, eggplant and cantaloupe. Sympherobius barberi released at densities of 2–6 adults against eggs and nymphs of D. citri on infested orange jasmine plants in the cages provided a reduction of 43–81% in the number of provided eggs or nymphs. In the field tests on D. citri infested citrus trees, reduction averaged 35% in five cohorts in which developing colonies of 28–32 nymphs were provided to one S. barberi per cage. Findings suggest the significant potential of S. barberi as a predator of D. citri and to contribute to reducing huanglongbing.
Highlights
The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a primary vector of the causal pathogens of huanglongbing (HLB) known as citrus greening disease
Brown lacewings are known as natural enemies of the several insect pests in classical biological control (Sato and Takada, 2004)
The findings of this study may improve our understanding of utilizing S. barberi for augmentative biological control purposes in citrus crops worldwide, in systems where increased chemical control is negatively impacting naturally occurring predators
Summary
The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a primary vector of the causal pathogens of huanglongbing (HLB) known as citrus greening disease. Brown lacewings are known as natural enemies of the several insect pests in classical biological control (Sato and Takada, 2004) Both larvae and adults of several species are efficient predators on eggs and immature stages of several pests. Yayla and Satar (2012) found out that larvae of Sympherobius pygmaeus Rambur on the diet of Planococcus citri developed in 31 days at 25◦C and female laid maximum of 258 eggs Our objectives for these studies were (1) to investigate the development, reproduction and predation potential of S. barberi on the diet of D. citri, in comparison with frozen eggs of the Mediterranean flour moth Ephestia kuehniella (Lepidoptera: Pyralidae), and (2) to evaluate S. barberi for reducing D. citri populations under greenhouse and field conditions. The findings of this study may improve our understanding of utilizing S. barberi for augmentative biological control purposes in citrus crops worldwide, in systems where increased chemical control is negatively impacting naturally occurring predators
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.