Abstract
BackgroundThere is a continuing search for bone substitutes to avoid or minimize the need for autogenous bone grafts. Hydroxyapatite, a crystalline phase of calcium phosphate found naturally in bone minerals, has shown tremendous promise as a graft material. Coral is an osteoconductive material used as a bone graft extender. This study examined the effect of hydroxyapatite and Persian Gulf coral on osteogenesis in vivo using a rabbit model of bone healing.Materials and methodsA critical-size defect of 10 mm elongation was created in the radial diaphysis of 36 rabbits and supplied with either hydroxyapatite or coral or left empty (control group). Radiographs of each forelimb were taken postoperatively on day 1 and then at 2, 4, 6, and 8 weeks postinjury to evaluate bone formation, union, and remodeling of the defect. The operated radiuses were removed on the 56th postoperative day and were grossly and histopathologically evaluated. In addition, biomechanical testing was conducted on the operated and normal forelimbs of half of the animals of each group.ResultsIn radiological evaluation, bone formation and union were significantly superior in the coral and hydroxyapatite groups in comparison with the control group on the 42nd and 56th day postinjury (P < 0.05). There were no statistical differences between groups in remodeling criteria at the 56th day postinjury (P > 0.05). In histopathological evaluation, the union scores of the rabbits administered hydroxyapatite or coral were statistically superior to those of the animals of the control group on the 56th day postinjury (P < 0.05). In biomechanical evaluation, the control group showed weakness of biomechanical properties in comparison with the coral and hydroxyapatite groups (P < 0.05).ConclusionsAccording to this study, significant difference was not observed between hydroxyapatite and natural coral and these two materials were significantly better than the control group at 8 weeks postinjury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.