Abstract

The reliability and ease of applying metaheuristic methods in solving large and complex equation systems make it interesting to be applied as an alternative solution to solving problems in various fields. This article proves the effectiveness of an optimization model based on the metaheuristic method for the analysis of hydraulic parameters of drinking water distribution pipes. The metaheuristic methods explored are Differential Evolution (DE) algorithm, Particle Swam Optimization (PSO) algorithm and CODEQ algorithm. The effectiveness of the three methods is measured relative by comparing the results of the analysis of the three models with the results from Newton Raphson method and Monte Carlo simulation method. The analysis shows that the optimization model based on the DE, PSO and CODEQ algorithms is very effective for solving problems on a simple network that has 6 pipe elements and 5 service nodes. The results obtained have a level of accuracy as good as Newton Raphson method. In the case of complex networks that have 32 pipe elements and 21 service nodes, there is an indication of performance degradation which is indicated by a decrease in fitness value. In this case, Newton Raphson method still shows its consistency. The optimization model based on the metaheuristic method is still far more effective than the Monte Carlo simulation method, although it is not as effective as Newton Raphson method. The Monte Carlo simulation method is not recommended for hydraulic pipe network analysis, even for simple networks.

Highlights

  • Analysis of the distribution network hydraulic parameters is an important part of the design and maintenance of drinking water supply systems

  • The analysis shows that the optimization model based on the Differential Evolution (DE), Particle Swam Optimization (PSO) and CODEQ algorithms is very effective for solving problems on a simple network that has 6 pipe elements and 5 service nodes

  • The optimization model based on DE, PSO and CODEQ algorithms for hydraulic parameter analysis in pipelines has an equivalent level of performance, but not as effective as Newton Raphson method

Read more

Summary

Introduction

Analysis of the distribution network hydraulic parameters is an important part of the design and maintenance of drinking water supply systems. Development of hydraulic analysis methods for drinking water distribution pipelines in general include; the Hardy Cross method (Cross, 1936; Hoag and Weinberg, 1957), Simultaneous Node method (Martin and Peters, 1963; Shamir and Howard, 1968), Simultaneous Loop method (Epp and Fowler, 1970; Jeppson, 1976), Simultaneous Pipe petode namely the Linear Method (Wood and Charles, 1972), the Simultaneous Network method or the Global Gradient Method (Todini and Pilati, 1987). These methods are developed from the basis of physical analogies and mathematical modeling [1]. Efforts to improve the performance of hydraulic analysis methods were proposed by several researchers, including; nodal analysis models of looped water distribution networks [2], and hydraulic analysis of water supply networks using a Modified Hardy Cross method [3]

Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.