Abstract
We investigated the feasibility of a robust optimization with 6 MV X-ray (6X) and 10 MV X-ray (10X) flattening filter-free (FFF) beams in a volumetric modulated arc therapy (VMAT) plan for lung stereotactic body radiation therapy (SBRT) using a breath-holding technique. Ten lung cancer patients were selected. Four VMAT plans were generated for each patient; namely, an optimized plan based on the planning target volume (PTV) margin and a second plan based on a robust optimization of the internal target volume (ITV) with setup uncertainties, each for the 6X- and 10X-FFF beams. Both optimized plans were normalized by the percentage of the prescription dose covering 95% of the target volume (D95%) to the PTV (1050 cGy × 4 fractions). All optimized plans were evaluated using perturbed doses by specifying user-defined shifted values from the isocentre. The average perturbed D99% doses to the ITV, compared to the nominal plan, decreased by 369.1 (6X-FFF) and 301.0 cGy (10X-FFF) for the PTV-based optimized plan, and 346.0 (6X-FFF) and 271.6 cGy (10X-FFF) for the robust optimized plan, respectively. The standard deviation of the D99% dose to the ITV were 163.6 (6X-FFF) and 158.9 cGy (10X-FFF) for the PTV-based plan, and 138.9 (6X-FFF) and 128.5 cGy (10X-FFF) for the robust optimized plan, respectively. Robust optimized plans with 10X-FFF beams is a feasible method to achieve dose certainty for the ITV for lung SBRT using a breath-holding technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.